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The approach to multibeam X-ray diffraction by Shen [Acta Cryst. (1986). A42,

525±533] has been carefully re-examined for three-beam Laue±Laue diffraction

in a perfect non-absorbing semi-in®nite crystal. A modi®ed version of Shen's

theory is shown to be equivalent to the Takagi±Taupin formalism. The

perturbation of the two-beam integrated power when a third beam is being

excited is thus expressed by non-diverging terms. Both Aufhellung and

Umweganregung terms are recovered.

1. Introduction

The theory for multibeam X-ray diffraction in a perfect crystal

may be developed along different routes all emerging from

Maxwell's equations for the electrical ®eld in a spatial periodic

dielectric medium.

The original approach, the Ewald±von Laue theory (Ewald,

1917; von Laue, 1931), leads to the fundamental equations that

are solved numerically for the amplitudes of the constituents

of the X-ray wave®eld for a general n-beam situation (n � 3)

(Colella, 1974; Chang, 1984; Weckert & HuÈ mmer, 1990, 1997;

Stetsko & Chang, 1997).

Takagi and Taupin (Takagi, 1962, 1969; Taupin, 1964)

primarily developed their theory of diffraction for distorted

crystals. It is however easily adapted to perfect crystals of

®nite size. The Takagi±Taupin equations may be processed

analytically (Thorkildsen, 1987; Thorkildsen & Larsen, 1998)

and have been shown (Thorkildsen et al., 2001) to give results

in perfect agreement with the numerical solution of the

fundamental equations for a symmetrical three-beam Laue

transmission case. The analysis is performed for a semi-in®nite

crystal slab, i.e. a parallel plate of in®nite lateral extent but

®nite thickness t. Owing to slow convergence of the series

expansions for the wave amplitudes, the results are valid for a

crystal thickness limited to approximately half the value of the

actual extinction lengths.

Following Jackson (1975), Shen (1986) developed a

perturbative approach, analogous to the Born approximation

from scattering theory in quantum mechanics, for the solution

of the inhomogeneous wave equation for the displacement

®eld within an unbounded crystal. The subsequent analysis of

a three-beam situation yielded an expression for the diffracted

intensity that diverged at the center of the three-beam pro®le.

This approach has later been considerably elaborated upon

(Shen, 1999b, 2000; Shen & Huang, 2001) through the

expanded distorted-wave approximation (EDWA), especially

suited to analyze reference-beam diffraction experiments

(Shen, 1998, 1999a). Within that extended framework, analy-

tical results are found to be in agreement with numerical

solutions of the fundamental equations for the entire range of

excitation of a secondary wave. However, for a valid

approximation, the effective PendelloÈsung thickness asso-

ciated with the distorting wave is restricted to be less than one.

The purpose of this work is to show that a modi®cation of

the original procedure outlined by Shen in fact reproduces the

results from the Takagi±Taupin formalism and the thin-crystal

limit of EDWA for three-beam Laue±Laue diffraction when

crystal ®niteness is taken into account. Anomalous-dispersion

corrections are assumed to be negligible. Thus, Friedel's law

applies and the in¯uence of absorption is not treated. To

include ®rst-order Aufhellung and primary-extinction effects,

the perturbative scheme has to be extended to third order.

The theory has a general part, x2.1, that brie¯y discusses the

different approaches to multibeam X-ray diffraction. The

procedure for calculation, restricted to a three-beam case,

closely follows the work by Shen (1986) and is outlined in xx2.2

and 2.3. The effect of having a semi-in®nite crystal is analyzed

using the Fourier transform of the crystal shape function, x2.4.

The main results are summarized in x2.6 using de®nitions

given in x2.5.

2. Theory

2.1. General

Maxwell's wave equation for the displacement ®eld D�r; t�
in a dielectric medium is (Authier, 2001)



r � r �D� 1

c2

@2D

@t2
� r � r � ��eD�; �1�

where �e�r�, the electrical susceptiblity, is a periodic function

in the crystal lattice and expressed by the Fourier expansion

�e�r� � �o � �0e�r� � �o �
P
p 6�o

�p exp�ÿ2�ip � r�: �2�

The Fourier amplitudes are given by

�p � ÿ
re�

2

�Vc

Fp: �3�

Here re is the classical electron radius, � the X-ray wavelength,

Vc the unit-cell volume and Fp the structure factor associated

with lattice node p.

Within the fundamental theory of X-ray diffraction, the

displacement vector for the case of n beams is given by the

wave®eld (Weckert & HuÈ mmer, 1997):

D�r; t� �P4n

j�1

cj

P
p

Djp exp�2�i��t ÿ kjp � r��; �4�

where the wavevectors, kjp, and corresponding amplitudes,

Djp, are obtained from the eigenvalue equations:

�k2
o ÿ k2

p�Dp �
P
q 6�p

�pÿq�k2
pDq ÿ �kp �Dq�kp� � 0; �5�

where ko � jkoj, while the coef®cients, cj, are determined by

means of the boundary conditions. j counts the number of

linearly independent solutions, corresponding to the number

of tie points associated with the dispersion surface.

In the Takagi±Taupin approach to X-ray diffraction in a

perfect crystal, the displacement vector is expressed by:

D�r; t� �P2

j�1

P
p

Djp�r� exp�2�i��t ÿ kp � r��: �6�

The spatial varying amplitudes, Djp�r�, are obtained from the

Takagi±Taupin equations (Takagi, 1969; Thorkildsen &

Larsen, 1998):

�i=���kp � r�Dp � �k2
o ÿ k2

p�Dp �
P
q 6�p

�pÿq�k2
pDq ÿ �kp �Dq�kp�;

�7�
subject to standard boundary conditions (Authier, 2001). The

wavevectors are constants, determined by the average wave-

number:

ko � K�1� 1
2�o� �8�

and the deviation parameters (Authier et al., 1968):

�p � jkpj ÿ ko; �9�
K � 1=� � �=c being the wavenumber in vacuum. Here j

enumerates the two polarization states.

In the approach devised by Shen, the displacement ®eld is

written

D�r; t� � D�r� exp�2�i�t�: �10�
By explicitly taking into account the average contribution to

the electric susceptibility, �o, i.e. by implementing the DWA

approximation (Daillant & Gibaud, 1999), cf. Fig. 1 of Shen

(1999b), equation (1) may be written:

r2D� 4�2k2
oD � ÿr � r � ��0eD�: �11�

The formal solution of this equation, given by the combination

of a particular solution and a solution of the homogeneous

equation, is

D�r� � D0 exp�ÿ2�iko � r� �
1

4�

Z
V

d3r0
exp�ÿ2�ikojrÿ r0j�

jrÿ r0j
� r0 � r0 � ��0e�r0�D�r0��: �12�

The result of applying proper boundary conditions will be

closely related to the Ewald±Oseen extinction theorem

(Ewald, 1916; Oseen, 1915; Born & Wolf, 1997) and should be

addressed separately. Suf®ce here to say that D0 is interpreted

as the amplitude of the incoming wave. The integration

subscript, V, indicates that the integration covers the volume

of the crystal. The particular solution is obtained by the

Green-function method. The Green function, G�r; r0�, is the

solution of the equation

r2G�r; r0� � 4�2k2
oG�r; r0� � ÿ��rÿ r0�:

This equation is solved by Fourier methods (Roman, 1965;

Merzbacher, 1970) leading to the outgoing spherical wave:

G���r; r0� � 1

4�

exp�ÿ2�ikojrÿ r0j�
jrÿ r0j :

The subscript �� indicates that the spherical wave is linked to

the plane-wave expansion:

exp�ÿ2�ikojrÿ r0j�
jrÿ r0j � lim

�!0

1

�

Z
d3k

exp�ÿ2�ik � �rÿ r0��
k2 ÿ k2

o � i�
;

�13�
showing explicitly how to avoid singularities in the integrand

along the real k axis. As will be apparent later on, cf. equation

(27), this is a point of great importance.

2.2. Procedure for calculation

We associate a counting variable, ", with the smallness

quantity �0e in equation (12), and express the amplitude

function D�r� by the series expansion

D�r� � P1
n�0

"nD�n��r�: �14�

In the ®nal expressions, "! 1. By inserting (14) into (12) and

equating equal powers in ", we obtain the recurrence relations:

D�n��r� � 1

4�

Z
d3r0

exp�ÿ2�ikojrÿ r0j�
jrÿ r0j

� r0 � r0 � ��0e�r0�D�nÿ1��r0��; n � 1;

with

D�0��r� � D0 exp�ÿ2�iko � r�:
In the string of volume integrations that will occur in the

calculation of the nth-order term, the spherical wave of the
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outermost integration, the radiation part, is treated in the far-

®eld limit:

exp�ÿ2�ikojrÿ r0j�
jrÿ r0j � exp�ÿ2�ikor�

r
exp�2�ikon̂ � r0�;

where we have introduced a unit vector n̂ � r=r in the direc-

tion of observation, r being the crystal±detector distance. The

other (internal) spherical waves are all processed using the

Fourier expansion of (13). The generic integral, Iw, associated

with a vector function w�r�, is evaluated according to

Iw �
R
V

d3r exp�2�ik � r�r � r � w�r�

� ÿ�2��2k� k� R
V

d3r exp�2�ik � r�w�r�:

This result is obtained after integration by parts using the

divergence theorem and by assuming vanishing contributions

from the associated surface integrals. It follows that D�1��r�
may be calculated from

D�1��r� � ÿ��exp�ÿ2�ikor�=r�k2
o n̂� n̂�D0

� R
V

d3r0 �0e�r0� exp�2�i�kon̂ÿ ko� � r0�; �15�

while

D�2��r� � ��exp�ÿ2�ikor�=r�k2
o n̂� n̂

� R d3k0 �1=�k02 ÿ k2
o��k0 � k0 �D0

� R
V

d3r0 �0e�r0� exp�2�i�kon̂ÿ k0� � r0�

� R
V

d3r00�0e�r00� exp�2�i�k0 ÿ ko� � r00� �16�

and

D�3��r� � ÿ��exp�ÿ2�ikor�=r� k2
o n̂� n̂

� R d3k0 �1=�k02 ÿ k2
o��
R

d3k00 �1=�k002 ÿ k2
o��

� k0 � k0 � k00 � k00 �D0

� R
V

d3r0 �0e�r0� exp�2�i�kon̂ÿ k0� � r0�

� R
V

d3r00 �0e�r00� exp�2�i�k0 ÿ k00� � r00�

� R
V

d3r000 �0e�r000� exp�2�i�k00 ÿ ko� � r000�: �17�

In (15)±(17) and all subsequent equations, multiple vector

cross products are evaluated according to:

A1 �A2 � . . .�Anÿ2 �Anÿ1 �An

� �A1 � �A2 � �. . .� �Anÿ2 � �Anÿ1 �An�� . . .���:

2.3. Three-beam diffraction

We start by considering the ®rst-order term. Substituting

the Fourier expansion of the susceptibility, equation (2), into

equation (15) and using equation (19), we have:

D�1��r� � ÿ��exp�ÿ2�ikor�=r�P
p 6�o

�pk2
o n̂� n̂�D0S��kp�:

�18�

The function S�K� is the Fourier transform of the crystal shape

function, S�r�:

S�K� � R d3r S�r� exp�2�iK � r�; �19�

where the volume integration in principle spans the whole

space, since S�r� � 0 for r outside the crystal boundaries,

S�r� � 1 otherwise. In the limit of an in®nite crystal, S�K�
converges weakly towards ��K�; a Dirac � function. In (18), the

characteristic mathematical properties of S have been utilized

by de®ning the deviation parameter �kp, j�kpj � K:

�kp � kon̂ÿ ko ÿ p:

Diffraction will be limited to small volume elements in reci-

procal space associated with lattice nodes in the vicinity of the

Ewald sphere. Three-beam diffraction is of special importance

owing to its potential to carry phase information related to the

triplet structure invariant ��. The wavevectors involved are

ko, kh and kg, linked by the reciprocal-lattice vectors �h, �g
and��hÿ g�. To determine the direction of the vector D�1�, we

use the approximation

kp � ko � p � K ŝp; p 2 fo; h; gg;

with ŝp being a unit vector. kh is regarded as the wavevector of

the primary beam and the direction of observation is set to

kon̂ � ko � h��kh � Kŝh:

Thus,

�kp � �kh � �hÿ p�

and the property of S causes a single term, p � h, in (18) to

contribute. Using (3), we express the ®rst-order contribution

to the primary diffracted wave1 indicated by the subscript h:

D
�1�
h �r� �

exp�ÿ2�ikor�
r

re

Vc

� �
�ŝh � ŝh �D0�FhS��kh�: �20�

Equation (20) should be compared with equation (14) of Shen

(1986). Although S / V for a ®nite crystal, the procedure by

Shen does not properly take into account the spreading of the

reciprocal-lattice points.

By the same arguments, we obtain the contributions to

second and third order:

D
�2�
h �r� � �exp�ÿ2�ikor�=r� re

Vc

� �2

�ŝh � ŝh � ŝg � ŝg �D0�

� FhÿgFg

1

�

Z
d3�k0

1

jkg ��k0j2 ÿ jkoj2
� S��kh ÿ�k0�S��k0�; �21�

1 The zeroth-order term does not contribute to the wave in the kh direction.



D
�3�
h �r� � �exp�ÿ2�ikor�=r� re

Vc

� �3��
�ŝh � ŝh � ŝo � ŝo � ŝh

� ŝh �D0�FhFÿhFh

1

�2

Z
d3�k0

1

jko ��k0j2 ÿ jkoj2

�
Z

d3�k00
1

jkh ��k00j2 ÿ jkoj2

� S��kh ÿ�k0�S��k0 ÿ�k00�S��k00�
�

�
�
�ŝh � ŝh � ŝo � ŝo � ŝg � ŝg �D0�FhFÿgFg

� 1

�2

Z
d3�k0

1

jko ��k0j2 ÿ jkoj2

�
Z

d3�k00
1

jkg ��k00j2 ÿ jkoj2

� S��kh ÿ�k0�S��k0 ÿ�k00�S��k00�
�

�
�
�ŝh � ŝh � ŝg � ŝg � ŝh � ŝh �D0�FhÿgFgÿhFh

� 1

�2

Z
d3�k0

1

jkg ��k0j2 ÿ jkoj2

�
Z

d3�k00
1

jkh ��k00j2 ÿ jkoj2

� S��kh ÿ�k0�S��k0 ÿ�k00�S��k00�
��
: �22�

The factors 1=�jkp ��k0j2 ÿ jkoj2� are denoted resonance

terms.

2.4. A semi-infinite crystal

The Fourier transform of the shape function for a semi-

in®nite crystal of thickness t becomes

S�K� � Rt
0

dz
R1
ÿ1

dy
R1
ÿ1

dx exp�2�i�Kxx� Kyy� Kzz��

� ��Kx���Ky� exp��iKzt� sin��Kz t�=�Kz:

By introducing the dimensionless variable u,

u � ��khzt;

we have:

S��kh� � ���khx����khy� exp�iu�t �sin u�=u: �23�
Integrals of the type encountered in the second-order term

will be evaluated according to

1

�

Z
d3�k0

1

jkp ��k0j2 ÿ jkoj2
S��kh ÿ�k0�S��k0�

� �t2=�����khx����khy� exp��i�khzt�

�
Z 1
ÿ1

d�k0z
1

jkp ��k0zk̂j2 ÿ jkoj2

� sin���k0zt�
��k0zt

sin����khz ÿ�k0z�t�
���khz ÿ�k0z�t

:

Here k̂ is a unit vector in the z direction, i.e. along the inward

drawn normal vector to the entrance surface of the crystal.

The denominator in the resonance term is linearized by

jkp ��k0zk̂j2 ÿ jkoj2 � 2�kp � k̂� �k0z �
K�p

�kp � k̂�

" #
; �24�

where we have used the deviation parameter �p introduced in

(9). To obtain (24), squares of small terms (�k0z � �p � K�0)

have been neglected. This approximation prevents the

discussion of grazing-wave diffraction modes. In what follows,

we will also limit ourselves to Laue±Laue diffraction, thus

�kp � k̂� � K�ŝp � k̂� � K cos p > 0 for p 2 fo; h; gg, where p is

the angle between the direction ŝp and the surface normal k̂.

By introducing the following dimensionless variables:

z0 � ��k0zt;

z00 � ��k00z t;

vp � �
K�p

�kp � k̂�
t � � �p

cos p

t;

we obtain

1

�

Z
d3�k0

1

jkp ��k0j2 ÿ jkoj2
S��kh ÿ�k0�S��k0�

� ���khx����khy� exp�iu��t2=K cos p�

� 1

2�

Z 1
ÿ1

dz0
1

z0 � vp � i�0
sin�z0 ÿ u�

z0 ÿ u

sin z0

z0
: �25�

Similarly, the integrations involved in calculating the third-

order terms may be reduced to the standard form:

1

�2

Z
d3�k0

1

jkp ��k0j2 ÿ jkoj2
Z

d3�k00
1

jkq ��k00j2 ÿ jkoj2
� S��kh ÿ�k0�S��k0 ÿ�k00�S��k00�
� ���khx����khy� exp�iu��t3=K2 cos p cos q�

� 1

4�2

Z 1
ÿ1

dz0
1

z0 � vp � i�0
sin�z0 ÿ u�

z0 ÿ u

�
Z 1
ÿ1

dz00
1

z00 � vq � i�00
sin�z00 ÿ z0�

z00 ÿ z0
sin z00

z00
: �26�

In (25) and (26), we have explicitly indicated the smallness

parameters �0, �00 introduced to obtain the correct path of the

complex integrations (limits �0, �00 ! 0 are implied).

2.5. Definitions

We de®ne a set of functions:2

g�1��u� � �sin u�=u

and

g
�2�
< �u; vg� ÿ ig

�2�
= �u; vg� �

1

2�

Z 1
ÿ1

dz0
1

z0 � vg

sin�z0 ÿ u�
z0 ÿ u

sin z0

z0
:

For the third-order contributions, we impose the conditions

vo � 0 and vh � ÿu. The former follows from the de®nition of
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�p, equation (9), and the latter one from equation (24) eval-

uated at exact resonance. We get:

g
�3�
1;<�u� ÿ ig

�3�
1;=�u�

� 1

4�2

Z 1
ÿ1

dz0
1

z0
sin�z0 ÿ u�

z0 ÿ u

Z 1
ÿ1

dz00
1

z00 ÿ u

sin�z00 ÿ z0�
z00 ÿ z0

sin z00

z00
;

g
�3�
2;<�u; vg� ÿ ig

�3�
2;=�u; vg�

� 1

4�2

Z 1
ÿ1

dz0
1

z0
sin�z0 ÿ u�

z0 ÿ u

Z 1
ÿ1

dz00
1

z00 � vg

sin�z00 ÿ z0�
z00 ÿ z0

sin z00

z00
;

g
�3�
3;<�u; vg� ÿ ig

�3�
3;=�u; vg�

� 1

4�2

Z 1
ÿ1

dz0
1

z0 � vg

sin�z0 ÿ u�
z0 ÿ u

Z 1
ÿ1

dz00
1

z00 ÿ u

sin�z00 ÿ z0�
z00 ÿ z0

sin z00

z00
:

The key result used for evaluation of these integrals is the

following operator equation given by Roman (1965):

lim
�!0

1

z� v� i�
� P

1

z� v
ÿ i���z� v�: �27�

P indicates the Cauchy principal value. The results of the

integrations, performed using the residue theorem, are

summarized in Appendix A.

We introduce polarization factors p
�i�
j by the de®nitions:

jD0jp�1� � ÿ�ŝh � ŝh �D0�;
jD0jp�2� � �ŝh � ŝh � ŝg � ŝg �D0�;
jD0jp�3�1 � ÿ�ŝh � ŝh � ŝo � ŝo � ŝh � ŝh �D0�;
jD0jp�3�2 � ÿ�ŝh � ŝh � ŝo � ŝo � ŝg � ŝg �D0�;
jD0jp�3�3 � ÿ�ŝh � ŝh � ŝg � ŝg � ŝh � ŝh �D0�:

The choice of signs causes the term d̂0 � D0=jD0j to enter with

a � sign for all factors, e.g.

p�1� � d̂0 ÿ ŝh�ŝh � d̂0�;
p�2� � d̂0 ÿ ŝh�ŝh � d̂0� ÿ ŝg�ŝg � d̂0� � ŝh�ŝh � ŝg��ŝg � d̂0�;

..

.
:

Furthermore, we use dimensionless parameters �pq,

�pq � �cos p cos q�ÿ1=2�t� re=Vc�Fpÿq;

and explicitly introduce the phase of the triplet structure

invariant, �� � 'ÿh � 'hÿg � 'g, in the calculation by

�hg�go=�ho � ÿ exp�i���:
ÿ, the modulus of the left-hand side, is thus proportional to

jFhÿgjjFgj=jFhj.

2.6. Diffracted intensity and integrated power

Using the de®nitions of x2.5, we arrive at the ®nal expres-

sion for the amplitude of the primary diffracted wave, valid to

third order:3

Dh�r� � ÿ�exp�ÿ2�ikor�=r����khx����khy� exp�iu�
� t�re=Vc�FhjD0jfp�1�g�1��u�
ÿ p�2�ÿ�cos �� � i sin ����g�2�< �u; vg� ÿ ig

�2�
= �u; vg��

� p�3�1 j�ohj2g
�3�
1;<�u�

� p
�3�
2 j�ogj2�g�3�2;<�u; vg� ÿ ig

�3�
2;=�u; vg��

� p
�3�
3 j�hgj2�g�3�3;<�u; vg� ÿ ig

�3�
3;=�u; vg��g: �28�

The corresponding diffracted intensity is given by

Ih � �c=2"0�Dh�r� �D�h�r�;

and we obtain:

Ih � I0�1=r2��ret=Vc�2jFhj2�2��khx��2��khy�f�p�1� � p�1��h�0��u�
� 2�p�1� � p�3�1 �j�ohj2h

�2�
1 �u� ÿ 2�p�1� � p�2��

� ÿ�h�1�1 �u; vg� cos �� � h
�1�
2 �u; vg� sin ���

� 2�p�1� � p�3�2 �j�ogj2h
�2�
2 �u; vg� � 2�p�1� � p�3�3 �j�hgj2h

�2�
3 �u; vg�

� �p�2� � p�2��ÿ2h
�2�
4 �u; vg�g: �29�

I0 is the intensity of the incoming X-ray beam. The h functions

are summarized in Appendix A. The integrated power is then

calculated from (Warren, 1969; Becker & Coppens, 1974):

Ph �
r2�3

sin 2�oh

Z
d3�kh Ih:

�oh is the Bragg angle of the primary re¯ection and 1= sin 2�oh

the Lorentz factor. Special care must be taken in handling the

integrations involving �2��khx� and �2��khy�. These � func-

tions arise from limiting processes of the type

���khx� � lim
Lx!1

Lx

sin���khxLx�
��khxLx

;

where Lx (Ly) is a lateral dimension of the crystal. In fact, for a

semi-in®nite crystal, Lx � Ly corresponds to the illuminated

area, A, of the crystal surface. Lx (Ly) should thus be regarded

as a ®nite quantity, although still large enough to warrant the

use of a � function in S. It follows that:

R1
ÿ1

d�khx �
2��khx� � L2

x�1=�Lx�
R1
ÿ1
��sin2 x�=x2� dx � Lx;

giving

R1
ÿ1

d�khx �
2��khx�

R1
ÿ1

d�khy �
2��khy� � LxLy � A:

We then obtain our ®nal expression for the integrated primary

diffracted power in the vicinity of a three-beam point:4

3 We have applied the result g
�3�
1;=�u� � 0. 4 The variable 2vg corresponds to �g of Thorkildsen et al. (2001).



Ph � P0
h

�
1ÿ 1

3

p�1� � p�3�1

p�1� � p�1� j�ohj2

ÿ 2
p�1� � p�2�
p�1� � p�1� ÿ� f2�2vg� cos �� � f1�2vg� sin ���

ÿ 2

�
p�1� � p�3�2

p�1� � p�1� j�ogj2 �
p�1� � p�3�3

p�1� � p�1� j�hgj2
�

f3�2vg�

� 2
p�2� � p�2�
p�1� � p�1� ÿ

2f3�2vg�
�
: �30�

P0
h is the kinematical integrated power. The f functions are

de®ned by:

f1�x� � �1ÿ cos x�=x2;

f2�x� � �xÿ sin x�=x2;

f3�x� � �xÿ sin x�=x3:

We observe that equation (30) corresponds to equation (6) of

Thorkildsen et al. (2001), the main result from the Takagi±

Taupin approach. Furthermore, it also corresponds to equa-

tion (11) of Shen (2000) or equation (12) of Shen & Huang

(2001), the `thin-crystal' result from the EDWA approach. The

term in (30) proportional to j�ohj2 is the ®rst-order correction

of the integrated power owing to primary extinction. The term

involving cos �� and sin �� carries the triplet phase infor-

mation in a combination with the pro®le shape functions f1

and f2. One observes that the sine term, which is missing in the

original formulation by Shen, enters the calculation through

the coupling to the imaginary part of g�2� originating from the

�-function term in (27). The terms proportional to j�ogj2 and

j�hgj2 contribute to Aufhellung, while the one proportional to

ÿ2 gives rise to phase-independent Umweganregung.

Fig. 1 shows results for the relative change in integrated

power, �Ph ÿ P0
h�=P0

h, for the 2�20=0�22=20�2 three-beam case in

silicon, comparing equation (11) of Shen (2000) with equation

(30) of the present work. Parameters and units are speci®ed in

Thorkildsen et al. (2001) with the addition of A� � 0:1252t,

A�G � ÿ0:2443t� and � � ��, necessary to handle Shen's

equation. The incoming beam is �-polarized with D0 normal to

the plane spanned by ŝo and ŝg, the polarization state speci®ed

by Shen. The minor differences appearing in the ®gure are due

to the presence of the Aufhellung terms in (30). Three-beam

pro®les calculated from (30) are indistinguishable from what is

obtained from the Takagi theory, cf. equation (12) of Thor-

kildsen et al. (2001). In that work, a comparison is also made

with calculations from the full dynamical theory, indicating the

actual range of applicability of series-expansion approaches.

3. Concluding remarks

The current work shows that a modi®ed version of the original

approach by Shen to three-beam diffraction in a perfect

crystal is equivalent to the Takagi±Taupin approach when

applied to a semi-in®nite crystal slab. The formal structure of

the present approach is similar to what is found when quantum

®eld theoretical methods are applied to dynamical diffraction

theories (Ohtsuki & Yanagawa, 1966a,b). Besides, a general-

ization to more than three beams, which is not obvious within

the Takagi±Taupin approach, may be implemented. It is an

open question whether the present procedure for calculation

might be carried out for a ®nite perfect crystal for instance in

the shape of a sphere where S��k� � S�j�kj�. This would

eliminate the time-consuming analysis needed to reveal the

coupled surface integrations that appear when the point-

source method (Becker, 1977) is used to analyze the Takagi±

Taupin equations.

The self-consistent dynamical balance of wave amplitudes,

as it appears within the fundamental theory, is broken when

perturbative approximation schemes are applied. One should

therefore expect signi®cant deviations when results obtained

by series-expansion methods are compared with full simula-

tions based on the fundamental theory in cases where the

characteristic dimension of the diffracting domain exceeds one

extinction length.

APPENDIX A
Function definitions

The g functions are given by:

g
�2�
< �u; vg� �

�u� 2vg� sin uÿ u sin�u� 2vg�
4uvg�u� vg�

;

g
�2�
= �u; vg� �

sin vg sin�u� vg�
2vg�u� vg�

;

g
�3�
1;<�u� �

u cos uÿ sin u

2u3
;

g
�3�
1;=�u� � 0;

g
�3�
2;<�u; vg� � �ÿ2uvg�u� vg� cos uÿ �u2 ÿ 2v2

g� sin u

� u2 sin�u� 2vg��=�8u2v2
g�u� vg��;

g
�3�
2;=�u; vg� �

vg�u� vg� sin uÿ u sin vg sin�u� vg�
4uv2

g�u� vg�
;

g
�3�
3;<�u; vg� � �2uvg�u� vg� cos uÿ �u2 � 4uvg � 2v2

g� sin u

� u2 sin�u� 2vg��=�8u2vg�u� vg�2�;

g
�3�
3;=�u; vg� �

vg�u� vg� sin uÿ u sin vg sin�u� vg�
4uvg�u� vg�2

:
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Figure 1
Three-beam pro®les for the symmetrical transmission case 2�20=0�22=20�2
in silicon. Plate thickness t � 2 mm. The solid line represents equation
(30) of the present work, the dashed line equation (11) of Shen (2000), cf.
also Fig. 4 of Thorkildsen et al. (2001).
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The h functions are de®ned according to:

h�0��u� � �g�1��u��2;
h
�1�
1 �u; vg� � g�1��u�g�2�< �u; vg�;

h
�1�
2 �u; vg� � g�1��u�g�2�= �u; vg�;

h
�2�
1 �u� � g�1��u�g�3�1;<�u�;

h
�2�
2 �u; vg� � g�1��u�g�3�2;<�u; vg�;

h
�2�
3 �u; vg� � g�1��u�g�3�3;<�u; vg�;

h
�2�
4 �u; vg� � �g�2�< �u; vg��2 � �g�2�= �u; vg��2

and are explicitly expressed by:

h�0��u� � �sin u=u�2;

h
�1�
1 �u; vg� �

sin u��u� 2vg� sin uÿ u sin�u� 2vg��
4u2vg�u� vg�

;

h
�1�
2 �u; vg� �

sin u sin vg sin�u� vg�
2uvg�u� vg�

;

h
�2�
1 �u� �

sin u�u cos uÿ sin u�
2u4

;

h
�2�
2 �u; vg� � fsin u�ÿ2uvg�u� vg� cos uÿ �u2 ÿ 2v2

g� sin u

� u2 sin�u� 2vg��g=�8u3v2
g�u� vg��;

h
�2�
3 �u; vg� � fsin u�2uvg�u� vg� cos uÿ �u2 � 4uvg � 2v2

g� sin u

� u2 sin�u� 2vg��g=�8u3vg�u� vg�2�;
h
�2�
4 �u; vg� � fu2 � uvg � v2

g ÿ �u� vg��vg cos 2u� u cos 2vg�
� uvg cos�2�u� vg��g=�8u2v2

g�u� vg�2�:

These functions correspond to those de®ned in Thorkildsen et

al. (2001). Notice the two errors occurring in that paper: In

equation (5), the last term should read �2ÿ2h
�2�
4 ��; �� and in

the de®nition of h
�1�
1 , sin��3�=2���ÿ 2��� should be replaced by

sin��3=2���ÿ 2���.
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